Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(2)2023 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-36851602

RESUMO

Bayesian space-time regression models are helpful tools to describe and predict the distribution of infectious disease outbreaks and to delineate high-risk areas for disease control. In these models, structured and unstructured spatial and temporal effects account for various forms of non-independence amongst case counts across spatial units. Structured spatial effects capture correlations in case counts amongst neighboring provinces arising from shared risk factors or population connectivity. For highly mobile populations, spatial adjacency is an imperfect measure of connectivity due to long-distance movement, but we often lack data on host movements. Phylogeographic models inferring routes of viral dissemination across a region could serve as a proxy for patterns of population connectivity. The objective of this study was to investigate whether the effects of population connectivity in space-time regressions of case counts were better captured by spatial adjacency or by inferences from phylogeographic analyses. To compare these two approaches, we used foot-and-mouth disease virus (FMDV) outbreak data from across Vietnam as an example. We identified that accounting for virus movement through phylogeographic analysis serves as a better proxy for population connectivity than spatial adjacency in spatial-temporal risk models. This approach may contribute to design surveillance activities in countries lacking movement data.


Assuntos
Febre Aftosa , Animais , Febre Aftosa/epidemiologia , Vietnã/epidemiologia , Teorema de Bayes , Filogeografia , Surtos de Doenças
2.
Viruses ; 12(11)2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158200

RESUMO

As countries with endemic canine rabies progress towards elimination by 2030, it will become necessary to employ techniques to help plan, monitor, and confirm canine rabies elimination. Sequencing can provide critical information to inform control and vaccination strategies by identifying genetically distinct virus variants that may have different host reservoir species or geographic distributions. However, many rabies testing laboratories lack the resources or expertise for sequencing, especially in remote or rural areas where human rabies deaths are highest. We developed a low-cost, high throughput rabies virus sequencing method using the Oxford Nanopore MinION portable sequencer. A total of 259 sequences were generated from diverse rabies virus isolates in public health laboratories lacking rabies virus sequencing capacity in Guatemala, India, Kenya, and Vietnam. Phylogenetic analysis provided valuable insight into rabies virus diversity and distribution in these countries and identified a new rabies virus lineage in Kenya, the first published canine rabies virus sequence from Guatemala, evidence of rabies spread across an international border in Vietnam, and importation of a rabid dog into a state working to become rabies-free in India. Taken together, our evaluation highlights the MinION's potential for low-cost, high volume sequencing of pathogens in locations with limited resources.


Assuntos
Doenças do Cão/virologia , Vírus da Raiva/genética , Raiva/veterinária , Raiva/virologia , Análise de Sequência de DNA/instrumentação , Animais , Equipamentos para Diagnóstico , Cães , Doenças Endêmicas/prevenção & controle , Doenças Endêmicas/veterinária , Guatemala , Humanos , Índia , Quênia , Nanoporos , Filogenia , Saúde Pública , Vírus da Raiva/classificação , Análise de Sequência de DNA/métodos , Vietnã
3.
PLoS One ; 15(8): e0237129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32776964

RESUMO

Outbreaks of emerging coronaviruses in the past two decades and the current pandemic of a novel coronavirus (SARS-CoV-2) that emerged in China highlight the importance of this viral family as a zoonotic public health threat. To gain a better understanding of coronavirus presence and diversity in wildlife at wildlife-human interfaces in three southern provinces in Viet Nam 2013-2014, we used consensus Polymerase Chain Reactions to detect coronavirus sequences. In comparison to previous studies, we observed high proportions of positive samples among field rats (34.0%, 239/702) destined for human consumption and insectivorous bats in guano farms (74.8%, 234/313) adjacent to human dwellings. Most notably among field rats, the odds of coronavirus RNA detection significantly increased along the supply chain from field rats sold by traders (reference group; 20.7% positivity, 39/188) by a factor of 2.2 for field rats sold in large markets (32.0%, 116/363) and 10.0 for field rats sold and served in restaurants (55.6%, 84/151). Coronaviruses were also detected in rodents on the majority of wildlife farms sampled (60.7%, 17/28). These coronaviruses were found in the Malayan porcupines (6.0%, 20/331) and bamboo rats (6.3%, 6/96) that are raised on wildlife farms for human consumption as food. We identified six known coronaviruses in bats and rodents, clustered in three Coronaviridae genera, including the Alpha-, Beta-, and Gammacoronaviruses. Our analysis also suggested either mixing of animal excreta in the environment or interspecies transmission of coronaviruses, as both bat and avian coronaviruses were detected in rodent feces on wildlife farms. The mixing of multiple coronaviruses, and their apparent amplification along the wildlife supply chain into restaurants, suggests maximal risk for end consumers and likely underpins the mechanisms of zoonotic spillover to people.


Assuntos
Animais Selvagens/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Coronavirus/genética , Carne/virologia , Zoonoses/epidemiologia , Zoonoses/transmissão , Animais , Quirópteros/virologia , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Fezes/virologia , Abastecimento de Alimentos , Humanos , Filogenia , Reação em Cadeia da Polimerase , Porcos-Espinhos/virologia , RNA Viral/genética , Ratos , Risco , Vietnã/epidemiologia , Zoonoses/diagnóstico , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...